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Abstract

We define and undertake a systematic study of thick, syndetic, and piecewise syn-
detic subsets of a Fräıssé structure. Each of these collections forms a family in the
sense of Akin and Glasner [AG], and we define and study ultrafilters on each of these
families, paying special attention to ultrafilters on the thick sets. In the process, we
generalize many results of Bergelson, Hindman, and McCutcheon [BHM]. We also dis-
cuss some abstract questions about families implicit in the work of Akin and Glasner.

1 Introduction

Let G be a discrete group, and let Fin(G) denote the finite subsets of G. Recall the following
definitions (see either [BHM] or [HS]).

Definition 1.1.

• T ⊆ G is thick if for every E ∈ Fin(G), there is g ∈ G with gE ⊆ T ; equivalently, T
is thick if the collection {Tg−1 : g ∈ G} has the finite intersection property,

• S ⊆ G is syndetic if G\S is not thick; equivalently, S is syndetic if there is E ∈ Fin(G)
with

⋃
g∈E Sg

−1 = G,

• P ⊆ G is piecewise syndetic if there is E ∈ Fin(G) with
⋃
g∈E Pg

−1 thick.

Note the left-right switch from the definitions found in [BHM] or [HS]; the reasons for this
switch will be explained later. There are several equivalent formulations of these definitions.
One such formulation uses the space 2G, which we identify with the space of subsets of G.
G acts on 2G by right shift, i.e. for χA ∈ 2G and g, h ∈ G, we have χA · g(h) = χA(gh). We
now have the following equivalent characterizations.
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Fact 1.2.

• T ⊆ G is thick iff χG ∈ χT ·G,

• S ⊆ G is syndetic iff χ∅ 6∈ χS ·G,

• P ⊆ G is piecewise syndetic iff there is syndetic S ⊆ G with χS ∈ χP ·G.

Another formulation uses βG, the space of ultrafilters on G. We view G as a subspace of
βG by identifying g ∈ G with the principal ultrafilter containing g. To each subset A ⊆ G,
we can form the clopen set A := {p ∈ βG : A ∈ p}, and these clopen sets form a basis for the
topology of βG. We endow βG with the structure of a compact left-topological semigroup.
Compact left-topological semigroups contain minimal right ideals which are always closed.
In βG, each minimal right ideal is also a minimal (right) G-flow. We now have the following.

Fact 1.3.

• T ⊆ G is thick iff T ⊆ βG contains a minimal right ideal,

• S ⊆ G is syndetic iff S ∩M 6= ∅ for every minimal right ideal M ⊆ βG,

• P ⊆ G is piecewise syndetic iff P ∩M 6= ∅ for some minimal right ideal M ⊆ βG.

The primary goal of this paper is to generalize these definitions and characterizations to
the setting of countable first-order structures and their groups of automorphisms. We will
be especially interested in ultrahomogeneous structures, structures where every isomorphism
between finite substructures extends to an automorphism of the whole structure. If K is an
ultrahomogeneous structure with automorphism group G, we endow G with the pointwise
convergence topology. If A ⊆ K is a finite substructure, then the pointwise stabilizer GA :=
{g ∈ G : ∀a ∈ A(g ·a = a)} is an open subgroup; these open subgroups form a neighborhood
base for G at the identity. Now suppose that f : A → K is an embedding; we can identify
f with the (non-empty!) set of g ∈ G which extend f . Notice that {g ∈ G : g|A = f}
is a left coset of GA, and we can identify Emb(A,K) with the set of left cosets of GA.
Our generalized notions of thick, syndetic, and piecewise syndetic will describe subsets of
Emb(A,K).

There are three difficulties worth previewing now. First, each finite substructure of K
will give rise to different notions of thick, syndetic, and piecewise syndetic; we will need to
understand how these different notions interact with each other. Second, note that when G
is a countable discrete group, G acts on itself on both the left and the right. The right action
is used in Definition 1.1, and the left action, which is needed to define the right shift action
on 2G, is used in Fact 1.2. However, when G = Aut(K) and A ⊆ K is a finite substructure,
there is a natural left G action on Emb(A,K), but no natural notion of right action. Third,
when G = Aut(K), the space of ultrafilters on G is too fine a compactification to use. The
correct compactificaton to use is the Samuel compactification of G, denoted S(G); we will
need an explicit construction of S(G) to allow us to state something similar to Fact 1.3.

A secondary goal of this paper will be to consider the notions of thick, syndetic, and
piecewise syndetic sets as families, collections of subsets of a set X closed upwards under

2



inclusion. Families have been considered by Akin and Glasner [AG] and implicitly by Brian
[B]. We will need to study the family of thick sets in some detail; along the way, we will
define ultrafilters on families and address some general questions about how these ultrafilters
interact with maps.

2 Background

2.1 Fräıssé structures

Recall that S∞ is the group of all permutations of a countable set X. Given a finite B ⊆ X,
the pointwise stabilizer of B is the set NB = {g ∈ S∞ : ∀ b∈B (g(b) = b)}. We can endow
S∞ with the pointwise convergence topology, where a basis of open sets at the identity is
given by the collection {NB : B ∈ Pfin(X)}. This turns S∞ into a Polish group. Note that
each NB is a clopen subgroup of S∞.

Fix now G a closed subgroup of S∞. A convenient way to describe the G-orbits of finite
tuples from X is given by the notions of a Fräıssé class and structure.

Definition 2.1. Let L be a relational language. A Fräıssé class K is a class of L-structures
with the following four properties.

1. K contains only finite structures, contains structures of arbitrarily large finite cardi-
nality, and is closed under isomorphism.

2. K has the Hereditary Property (HP): if B ∈ K and A ⊆ B, then A ∈ K.

3. K has the Joint Embedding Property (JEP): if A,B ∈ K, then there is C which embeds
both A and B.

4. K has the Amalgamation Property (AP): if A,B,C ∈ K and f : A→ B and g : A→ C
are embeddings, there is D ∈ K and embeddings r : B → D and s : C → D with
r ◦ f = s ◦ g.

If D is an infinite L-structure, we write Age(D) for the class of finite L-structures which
embed into D. The following is the major fact about Fräıssé classes.

Fact 2.2. If K is a Fräıssé class, there is up to isomorphism a unique countably infinte
L-structure K with Age(K) = K satisfying one of the following two equivalent conditions.

1. K is ultrahomogeneous : if f : A → B is an isomorphism between finite substructures
of K, then there is an automorphims of K extending f .

2. K satisfies the Extension Property : if B ∈ K, A ⊆ B, and f : A→ K is an embedding,
there is an embedding h : B→ K extending f .

Conversely, if K is a countably infinite L-structure satisfying 1 or 2, then Age(K) is a
Fräıssé class.
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Given a Fräıssé class K, we write Flim(K), the Fräıssé limit of K, for the unique structure
K as above. We say that K is a Fräıssé structure if K ∼= Flim(K) for some Fräıssé class.
Our interest in Fräıssé structures stems from the following result.

Fact 2.3. For any Fräıssé structure K, Aut(K) is isomorphic to a closed subgroup of S∞.
Conversely, every closed subgroup of S∞ is isomorphic to Aut(K) for some Fräıssé structure
K.

Throughout the rest of the paper, fix a Fräıssé class K with Fräıssé limit K. Set G =
Aut(K). We also fix an exhaustion K =

⋃
n An, with each An ∈ K and Am ⊆ An for m ≤ n.

Write Hn = {gGn : g ∈ G}, where Gn = G ∩ NAn is the pointwise stabilizer of An; we can
identify Hn with Emb(An,K), the set of embeddings of An into K. Note that under this
identification, we have Hn =

⋃
N≥n Emb(An,AN). For g ∈ G, we often write g|n for gGn,

and we write in for Gn. The group G acts on Hn on the left; if x ∈ Hn and g ∈ G, we have
g · x = g ◦ x. For m ≤ n, we let inm ∈ Emb(Am,An) be the inclusion embedding.

Each f ∈ Emb(Am,An) gives rise to a dual map f̂ : Hn → Hm given by f̂(x) = x ◦ f .

Proposition 2.4.

1. For f ∈ Emb(Am,An), the dual map f̂ : Hn → Hm is surjective.

2. For every f ∈ Emb(Am,An), there is N ≥ n and h ∈ Emb(An,AN) with h ◦ f = iNm.

Proof. Item 1 is an immediate consequence of the extension property. For item 2, use
ultrahomogeneity to find g ∈ G with g ◦ f = im. Let N ≥ n be large enough so that
ran(g|n) ⊆ AN , and set h = g|n.

2.2 Topological dynamics and the Samuel compactification

We now want to investigate the dynamical properties of the group G. Though many of the
following definitions and facts hold for more general topological groups, we will only consider
the case G = Aut(K).

A G-flow is a compact Hausdorff space X equipped with a continuous right G-action
a : X × G → X. We suppress the action a by writing a(x, g) = x · g. If X is a G-flow, a
subflow Y ⊆ X is a closed subspace which is G-invariant. The G-flow X is minimal if it
contains no proper subflow; equivalently, X is minimal iff every orbit is dense. By Zorn’s
lemma, every G-flow contains a minimal subflow.

Given two G-flows X and Y , a G-map f is a continuous map f : X → Y satisfying
f(x · g) = f(x) · g for every g ∈ G. A G-flow X is universal if for every minimal G-flow Y ,
there is a G-map f : X → Y . The following is an important fact of topological dynamics.

Fact 2.5. There is up to G-flow isomorphism a unique G-flow M(G) which is both universal
and minimal. We call M(G) the universal minimal flow of M(G). Any G-map from M(G)
to M(G) is an isomorphism.

One way of exhibiting the universal minimal flow is to consider the closely related notion
of an ambit. A G-ambit is a pair (X, x0) with X a G-flow and x0 ∈ X a distinguished

4



point with dense orbit. If (X, x0) and (Y, y0) are G-ambits, a map of ambits f is a G-map
f : X → Y with f(x0) = y0. Note that there is at most one map of ambits from (X, x0) to
(Y, y0), and such a map is always surjective.

Fact 2.6. There is up to G-ambit isomorphism a unique G-ambit (S(G), 1) which admits
a map of G-ambits onto every other G-ambit. We call (S(G), 1) the greatest G-ambit. The
space S(G) is the Samuel compactification of G.

Now suppose M ⊆ S(G) is a subflow. If Y is any minimal G-flow, pick any y0 ∈ Y and
form the ambit (Y, y0). Let f : S(G) → Y be the unique map of ambits. Then f |M is a
G-map. It follows that M ∼= M(G).

We now proceed with an explicit construction of S(G). Let f ∈ Emb(Am,An). The dual
map f̂ extends to a continuous map f̃ : βHn → βHm, where for a discrete space X, βX is
the space of ultrafilters on X. If p ∈ βHn and f ∈ Emb(Am,An), we will sometimes write
p · f for f̃(p). Form the inverse limit lim←− βHn along the maps ı̃nm. We can identify G with a
dense subspace of lim←− βHn by associating to each g ∈ G the sequence of ultrafilters principal
on g|n. The space lim←− βHn turns out to be the Samuel compactification S(G) (see Corollary
3.3 in [P]).

To see that S(G) is the greatest ambit, we need to exhibit a right G-action on S(G).
This might seem unnatural at first; after all, the left G-action on each Hn extends to a left
G-action on βHn, and the maps ı̃nm are all G-equivariant, giving us a left G-action on S(G).
Indeed, let Gd be the group G with the discrete topology; then the map πm : Gd → Hm

given by πm(g) = gGm extends to a continuous map π̃m : βGd → Hm. As πm = ı̃nm ◦ πn for
n ≥ m, we obtain a map π : βGd → S(G), and the left action just described on S(G) makes
π G-equivariant, where βGd is given its standard left G-action. The problem is that the left
action is not continuous when G is given its Polish topology. However, βGd also comes with
a natural right G-action, and there is a unique way to equip S(G) with a right G-action to
make the map π equivariant. This right G-action on S(G) is continuous. For α ∈ lim←− βHn,
g ∈ G, m ∈ N, and S ⊆ Hm, we have

S ∈ αg(m)⇔ {x ∈ Hn : x ◦ g|m ∈ S} ∈ α(n)

where n ≥ m is large enough so that ran(g|m) ⊆ An. Notice that if g|m = h|m = f ,
then αg(m) = αh(m) := α · f := λαm(f). By distinguishing the point 1 ∈ lim←− βHn with
1(m) principal on im, we endow S(G) with the structure of a G-ambit, and (S(G), 1) is the
greatest ambit (see Theorem 6.3 in [Z]).

Using the universal property of the greatest ambit, we can define a left-topological semi-
group structure on S(G): Given α and γ in lim←− βHn, m ∈ N, and S ⊆ Hm, we have

S ∈ αγ(m)⇔ {f ∈ Hm : S ∈ α · f} ∈ γ(m).

If α ∈ S(G) and S ⊆ Hm, a useful shorthand is to put α−1(S) = {f ∈ Hm : S ∈ α · f}.
Then the semigroup multiplication can be written as S ∈ αγ(m) iff α−1(S) ∈ γ(m). Notice
that for fixed α, αγ(m) depends only on γ(m); indeed, if α ∈ lim←− βHn, p ∈ βHm, and

S ⊆ Hm, we have S ∈ α · p iff α−1(S) ∈ p. In fact, α · p = λ̃αm(p), where the map λ̃αm is the
continuous extention of λαm to βHm.

5



By continuity of left-multiplication, subflows of the G-flow lim←− βHn are exactly the closed
right ideals of the semigroup lim←− βHn.

Recall that if S is a semigroup, then u ∈ S is an idempotent if u · u = u.

Fact 2.7. In compact left-topological semigroups, minimal right ideals exist, are always
compact, and always contain idempotents. If Y, Y ′ ⊆ lim←− βHn are minimal right ideals, then
any G-map ϕ : Y → Y ′ is of the form ϕ(y) = αy for some α ∈ Y ′, and each such G-map is
an isomorphism.

Furthermore, write Y = lim←−Yn, Y ′ = lim←−Y
′
n, with Ym and Y ′m compact subsets of βHm.

Given α ∈ Y ′ as above, we note that since αy(m) depends only on y(m), the isomorphism
ϕ gives rise to homeomorphisms ϕm : Ym → Y ′m satisfying ı̃nm ◦ ϕn = ϕm ◦ ı̃nm for n ≥ m.

Some quick remarks about notation are in order. Given f ∈ Emb(Am,An) and S ⊆ Hm,
we will often want to consider the set (f̂)−1(S); instead of “dualling twice,” we instead write
f(S). Note that if x ∈ Emb(An,AN), then we have x(f(S)) = (x ◦ f)(S), so this notation
is justified. We also remark that whenever we write lim←−Ym for Ym ⊆ Hm closed, we are
implicitly assuming that ı̃nm(Yn) = Ym.

3 The family of thick sets

If X is an infinite set, a family S on X, or just (X,S), is a non-trivial collection of subsets
of X closed upwards under inclusion. By non-trivial, we demand that X ∈ S and ∅ 6∈ S. An
S-filter F on X is any filter F on X with F ⊆ S. An S-ultrafilter is any maximal S-filter.
By Zorn, any S-filter can be extended to some S-ultrafilter. Write β(S) for the collection of
S-ultrafilters. We borrow the term family from Akin and Glasner [AG], and the definition
of an S-filter is implicit in [B].

If (X,S) is a family and f : X → Y is a map, we can push forward the family S to the
family f(S) := {B ⊆ Y : f−1(B) ∈ S}. In a similar way, any S-filter F pushes forward
to an f(S)-filter f(F). We call a map f : (X,S) → Y strong if f−1(f(A)) 6∈ S whenever
A 6∈ S; we call f regular if f(β(S)) ⊆ β(f(S)), i.e. if the push forward of any S-ultrafilter is
an f(S)-ultrafilter. Note that we always have β(f(S)) ⊆ f(β(S)), since given q ∈ β(f(S)),
any p ∈ β(S) extending the S-filter generated by {f−1(B) : B ∈ q} will satisfy f(p) = q.
Here is a quick proposition to give some intuition about the definitions.

Proposition 3.1. Any strong map is also regular.

Proof. Suppose f : (X,S) → Y is strong, and let p ∈ β(S). To show f(p) ∈ β(f(S)), let
B ⊆ Y with B ∈ f(S) \ f(p). Then f−1(B) ∈ S \ p. As p ∈ β(S), there must be A ∈ p with
A∩f−1(B) 6∈ S. As f is strong, we have f(A∩f−1(B)) = f(A)∩B 6∈ f(S). As f(A) ∈ f(p),
we have shown that f(p) ∈ β(f(S)).

We will be interested in studying the family Tm of thick subsets of Hm, and in particu-
lar understanding the members of β(Tm). Our definitions of thick, syndetic, and piecewise
syndetic will most closely follow the second set of definitions from the introduction. Indeed,
since G acts on the left on Hm, this induces a right shift action on 2Hm
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Definition 3.2.

• T ⊆ Hm is thick iff χHm ∈ χT ·G,

• S ⊆ Hm is syndetic iff χ∅ 6∈ χS ·G,

• P ⊆ Hm is piecewise syndetic iff there is syndetic S ⊆ Hm with χS ∈ χP ·G.

Each of these notions is upwards closed, so forms a family. Write Sm and Pm for the
families of syndetic and piecewise syndetic subsets of Hm, respectively. Note that T ⊆ Hm

is thick iff Hm \ T is not syndetic, and vice versa.
Let us briefly return to the setting of the introduction, where G is a discrete group.

Definition 1.1 uses the right G-action on itself; given T ⊆ G, we need the right action to
describe the sets Tg−1 for g ∈ G. But the definition of “thick” given there also includes
a more combinatorial characterization, where T is thick iff for every E ∈ Fin(G), there is
g ∈ G with gE ⊆ T . When G = Z for instance, this amounts to saying that thick subsets
of the integers are exactly those subsets containing arbitrarily long intervals. Since this
characterization uses the left G-action on itself, we can hope to generalize it. We now return
to the normal setting of the paper, where G = Aut(K).

Proposition 3.3. T ⊆ Hm is thick iff for every n ≥ m, there is x ∈ Hn with
x ◦ Emb(Am,An) ⊆ T .

Proof. Suppose T ⊆ Hm is thick, and let gn ∈ G be a sequence of group elements with
χT · gn → χHm . By passing to a subsequence, we may assume that for each n ≥ m, we have
χT · gn(f) = 1 for every f ∈ Emb(Am,An). It follows that gn|n ◦ Emb(Am,An) ⊆ T .

Conversely, suppose T ⊆ Hm is a set so that for every n ≥ m, there is xn ∈ Hn with
xn ◦Emb(Am,An) ⊆ T . Find gn ∈ G with gn|n = xn. Then χ·gn → χHm , and T is thick.

Call a sequence ~X = {xn : n < ω} with each xn ∈ Hn an exhausting sequence. Writing

Emb(Am, ~X) :=
⋃
n≥m(xn ◦ Emb(Am,An)), we can say that T ⊆ Hm is thick iff there is an

exhausting sequence with Emb(Am, ~X) ⊆ T .
We now want something akin to the third set of definitions from the introduction. Before

we can attempt a generalization, we need to understand how the thick families on different
levels interact. The following proposition is implicit in section 4 of [Z] (see Lemma 4.2).

Proposition 3.4. For any f ∈ Emb(Am,An), we have that f̂(Tn) = Tm.

Proof. We need to show that T ⊆ Hm is thick iff f(T ) ⊆ Hn is thick. Assume first that T is

thick and ~X is an exhausting sequence with Emb(Am, ~X) ⊆ T . Then Emb(An, ~X) ⊆ f(T )

(since Emb(An, ~X) ◦ f ⊆ Emb(Am, ~X)).

For the other direction, suppose f(T ) is thick and ~X is an exhausting sequence with

Emb(An, ~X) ⊆ f(T ). For each N ≥ m, find `N ≥ N large enough so that for each h ∈
Emb(Am,AN), there is xh ∈ Emb(An,A`N ) with xh ◦ f = h. Let ~Y be the exhausing

sequence given by yN = x`N ◦ i
`N
N . Then Emb(Am, ~Y ) ⊆ T .
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A consequence of Proposition 3.4 is that for n ≥ m, f ∈ Emb(Am,An), and F a Tn-filter
on Hn, we have that f̂(F ) is a Tm-filter on Hm. This will be especially important when
f = inm.

If T ⊆ Hm, set T = {p ∈ βHm : T ∈ p}, and set T̃ = {α ∈ lim←− βHn : T ∈ α(m)}. If
Ym ⊆ βHm is closed, then the filter of clopen neighborhoods of Ym is the filter Fm on Hm so
that Ym =

⋂
T∈Fm

T . Conversely, if Fm is a filter on Hm, then the closed set for Fm is the

set
⋂
T∈Fm

T . The following two theorems are the key to generalizing Fact 1.3

Theorem 3.5. Let Y = lim←−Yn ⊆ lim←− βHn = S(G) be compact, with Ym ⊆ βHm for m ∈ N.
Let Fm be the filter of clopen neighborhoods of Ym. Then Y is a minimal right ideal iff each
Fm is a member of β(Tm).

Theorem 3.6. If f ∈ Emb(Am,An), then f̂ : (Hn, Tn)→ Hm is regular,

As a consequence of both Theorems 3.5 and 3.6, notice that if Fm ∈ β(Tm), then there is
a minimal right ideal Y = lim←−Ym ⊆ S(G) with Fm the filter of clopen neighborhoods of Ym.
In particular, since every thick T ⊆ Hm belongs to some F ∈ β(Tm), we have the following
corollary, a generalization of Theorem 2.9(d) from [BHM].

Corollary 3.7. T ⊆ Hm is thick iff T̃ ⊆ S(G) contains a minimal right ideal.

The first step is to characterize right ideals of lim←− βHn. The following is a generalization
of Theorem 8.7 from [Z].

Proposition 3.8. Let Y = lim←−Yn ⊆ lim←− βHn be compact, with Ym ⊆ βHm for m ∈ N. Let
Fm be the filter of clopen neighborhoods of Ym. Then Y contains a right ideal iff each Fm is
a Tm-filter.

Proof. First assume that each Ym is thick. For W ⊆ G finite, m ∈ N, and S ∈ Fm, let YW,S
consist of those α ∈ Y such that S ∈ αg(m) for each g ∈ W . Notice that YW,S ⊆ Y is closed,
hence compact.

Claim. First, let us show that YW,S is nonempty. Fix n large enough so that g(Am) ⊆ An

for each g ∈ W ∪ {1G}. For g ∈ G, set Tg = {f ∈ Hn : f ◦ g|m ∈ S}. We will show that the

set X := T1G \
(⋂

g∈W Tg

)
is not thick. If it were, pick N large enough so that g(An) ⊆ AN

for each g ∈ W ∪ {1G} and find h ∈ HN so that h ◦ Emb(An,AN) ⊆ X. But now for each
g ∈ W , set xg = h ◦ g|n ◦ inm = h ◦ iNn ◦ g|m. Since g|n and iNn are both in Emb(An,AN), we
have h ◦ g|n and h ◦ iNn in X. Since h ◦ g|n ∈ X ⊆ T1G , we have xg ∈ S. But this implies that
h ◦ iNn ∈

⋂
g∈W Tg, a contradiction.

Since Fn ∈ Tn and since T1G = inm(S) ∈ Yn, this means that (
⋂
g∈W∪{1G} Tg) ∈ p for some

p ∈ Yn. Now any α ∈ Y with α(n) = p is a member of YW,S. This proves the claim.

Now observe that if W1,W2 are finite subsets of G, S1 ∈ Fm, and S2 ∈ Fn (m ≤ n), then
letting S3 = inm(S1)∩S2 ∈ Fn, we have YW1,S1 ∩YW2,S2 ⊇ YW1∪W2,S3 . In particular, since each
YW,S is compact, there is α ∈ Y a member of all of them. Hence α ·G ⊆ Y is a subflow of
lim←− βHn.

For the other direction, suppose there were S ∈ Fm with S 6∈ Tm. Pick α ∈ Y ; we need
to show that for some g ∈ G, S 6∈ αg(m). To the contrary, suppose that S ∈ αg(m) for
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every g ∈ G, or equivalently, that S ∈ α · f for every f ∈ Hm. But then {x ∈ Hn : x ◦ f ∈
S for every f ∈ Emb(Am,An)} ∈ α(n), so in particular is non-empty. But this implies that
S is thick, a contradiction.

Before proving Theorem 3.5, we need a quick remark about topological dynamics. If X
is a G-flow, then each point x ∈ X gives rise to the ambit (x ·G, x). As such, there is a map
of ambits ϕ : (S(G), 1) → (x ·G, x), and we write ϕ(α) := x · α. Since ϕ is surjective, we
have x · S(G) = x ·G. If α, γ ∈ S(G), we also have x · (αγ) = (x · α) · γ. Now suppose that
X = 2Hm , and T ⊆ Hm. Then if α ∈ S(G), we have χT · α = χα−1(T ).

Proof of Theorem 3.5.
(⇐) We prove a slightly stronger statement. Suppose Y = lim←−Yn is a closed subset of
lim←− βHn with Fm the filter of clopen neighborhoods of Ym. Say that for infinitely many
m ∈ N, we have Fm ∈ β(Tm). By Proposition 3.4, we see that for every m ∈ N, Fm is
a Tm-filter, so by Proposition 3.8, Y contains some right ideal. If Z = lim←−Zn ( Y is any
proper closed subset, then Zm ( Ym for any large enough m ∈ N. So fix a large m ∈ N with
Fm ∈ β(Tm). The filter Gm of clopen neighborhoods of Zm then properly contains Fm and
thus cannot be in Tm. Hence Z is not a right ideal, so Y is a minimal right ideal.

(⇒) If α ∈ lim←− βHn, then the left-multiplication map p → α · p on βHm is continuous.
Hence if X ⊆ βHm is a closed subset defined by the filter F , αX ⊆ βHm is also closed. It
is defined by the filter

αF := {S ⊆ Hm : α−1(S) ∈ F}.

Now suppose that F is a Tm-filter. Then for any α ∈ lim←− βHn, αF is also a Tm-filter. This
is because α−1(S) ∈ Tm implies that for some α′ ∈ lim←− βHn, we have χS · αα′ = χHm . But
this implies that S ∈ Tm.

Let Y = lim←−Ym be a minimal right ideal, with Fm the filter of clopen neighborhoods of
Ym. Suppose for sake of contradiction that for some m ∈ N, Fm 6∈ β(Tm). Say Gm ) Fm
with Gm ∈ β(Tm). Inductively define for each n ≥ m Gn ∈ β(Tn) so that Gn+1 is any
Tn+1-ultrafilter with ı̂n+1

n (Gn+1) = Gn. If Zm ⊆ βHm is the closed set for Gm, then by the
proof of the right to left implication, lim←−Zn is a minimal right ideal. Fix α ∈ Z, and consider
αGm. As the left-multiplication map p → α · p is a homeomorphism from Ym to Zm, we
have α(Zm) ( Zm, so αGm ) Gm. However, αGm is a Tm-filter, and Gm is maximal. Taken
together, this is a contradiction.

We now turn to the proof of Theorem 3.6. First an easy lemma.

Lemma 3.9. If f : (X,S) → Z is a regular map, and f = g ◦ h, with h : X → Y and
g : Y → Z, then g : (Y, h(S))→ Z is regular.

Proof. Let q ∈ β(h(S)), and set r = g(q). Pick p ∈ β(S) with h(p) = q. Then f(p) = r, so
r ∈ β(f(S)) = β(g(h(S))).

Proof of Theorem 3.6.
By Proposition 2.4 and Lemma 3.9, it is enough to show that each ı̂nm is regular. Say
Fn ∈ β(Tn). Inductively define FN ∈ β(TN) for each N ≥ n so that ı̂NN+1(FN+1) = FN ;
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letting Yn ⊆ βHn be the closed set for Fn, we have seen that lim←−Yn is a minimal right ideal.
It follows that Fm = ı̂nm(Fn) is in β(Tm).

We end this section with a brief “sanity check.” Recall from section 2 the map πm :
Gd → Hm with πm(g) = g|m.

Theorem 3.10. T ⊆ Hm is thick iff π−1m (T ) ⊆ Gd is thick.

Proof. Say T ⊆ Hm is thick. Let g1, ..., gk ∈ Gd. Write fi = πm(gi), and find n ≥ m so
that for each i ≤ k, we have fi ∈ Emb(Am,An). By Proposition 3.3, there is x ∈ Hn with
x◦Emb(Am,An) ⊆ T . Find g ∈ Gd with g|n = x. Then for each i ≤ k, we have (ggi)|m ∈ T ,
so g ∈

⋂
i≤k π

−1
m (T )g−1i 6= ∅, and π−1m (T ) is thick.

Conversely, say T is not thick, so that S := Hm \ T is syndetic. By Proposition 3.3, this
means that there is n ≥ m so that for every x ∈ Hn, we have S ∩ (x ◦ Emb(Am,An)) 6= ∅.
Let Emb(Am,An) = {f1, ..., fk}, and find g1, ..., gk ∈ Gd with πm(gi) = fi. Fix g ∈ Gd.
Then for some i ≤ k, we have (ggi)|m ∈ S. But this implies that

⋃
i≤k π

−1
m (S)g−1i = Gd, so

π−1m (T ) = Gd \ π−1m (S) is not thick.

4 Piecewise syndetic sets

In the previous section, we successfully proved analogues of Definition 1.1 and Fact 1.3
for thick subsets of Hm using a definition resembling Fact 1.2. It easily follows that these
analogues also hold for syndetic subsets of Hm, in turn providing a generalization of Theorem
2.9(c) from [BHM]. However, we can not yet conclude that these analogues hold for piecewise
syndetic sets.

Let’s briefly consider what this even means. As we have pointed out before, there is no
right action on the set Hm, so it is not immediate what an analogue of Definition 1.1 even
looks like for piecewise syndetic sets. Theorem 3.10 suggests the following statement.

Theorem 4.1. P ⊆ Hm is piecewise syndetic iff π−1m (P ) ⊆ Gd is piecewise syndetic.

Proof. The surjection πm : Gd → Hm induces a continuous embedding π̂m : 2Hm → 2Gd ,
where given S ⊆ Hm, we have π̂m(χS) = χπ−1

m (S). The group Gd acts on the right on both
spaces, and the map π̂m is Gd-equivariant. The statements from Definition 3.2 do not depend
on the topology of G, so also hold for Gd.

Suppose P ⊆ Hm is piecewise syndetic, and let S ⊆ Hm be syndetic with χS ∈ χP ·Gd.
Then χπ−1

m (S) ∈ χπ−1
m (P ) ·Gd, and π−1m (S) ⊆ Gd is syndetic by Theorem 3.10. It follows that

π−1m (P ) is piecewise syndetic.
Conversely, suppose P ⊆ Hm is a set with π−1m (P ) ⊆ Gd piecewise syndetic. Then there

is syndetic W ⊆ Gd with W ∈ χπ−1
m (P ) ·Gd. But since 2Hm is compact, we must have that

W = π−1m (S) for some S ⊆ Hm, and this S is syndetic by Theorem 3.10. It follows that P is
piecewise syndetic.

Let us briefly return to the setting where G is a discrete group. It is a fact that P ⊆ G
is piecewise syndetic iff P = S ∩ T for some syndetic S ⊆ G and thick T ⊆ G. Let us recall
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one direction of the proof. Say P ⊆ G is piecewise syndetic, and let g1, ..., gk ∈ G with
T := Pg−11 ∪ · · · ∪ Pg−1k thick; we may assume that k is minimal and that g1 = 1G (if T
is thick, then so is Tg1). Then setting S = (G \ T ) ∪ P , we have that S is syndetic (since
Sg−11 ∪ · · · ∪ Sg−1k = G) and that P = S ∩ T . Notice that T \ P ⊆ G \ S is not thick.

Returning to the setting where G = Aut(K), we can ask whether these statements also
hold for Hm. Given a thick T ⊆ Hm, set Dest(T ) = {P ⊆ Hm : T \ P is not thick};
if P ∈ Dest(T ), we say that P destroys T . The main theorems of this section are the
following, generalizing Theorem 2.4 from [BHM]:

Theorem 4.2. P ⊆ Hm is piecewise syndetic iff P ∈ Dest(T ) for some thick T ⊆ Hm.

Theorem 4.3. P ⊆ Hm is piecewise syndetic iff there are thick T ⊆ Hm and syndetic
S ⊆ Hm with P = S ∩ T .

Let us remark that Theorems 4.2 and 4.3 are not corollaries of Theorem 4.1. The best we
can do is to note that given S ⊆ Hm and g ∈ G, we have π−1m (S)g−1 = π−1n (g|m(S)) for n ≥ m
large enough with g|m(Am) ⊆ An. Then using Theorem 4.1, we can say that if P ⊆ Hm

is piecewise syndetic, there is some n ≥ m and some thick T ⊆ Hn with inm(P ) ∈ Dest(T ).
However, it is not immediately clear that we can take n = m. In the preprint [Z1], it is
mistakenly asserted (see the discussion at the end of page 23) that Theorem 4.2 is somehow
obvious. So while the result is true, the proof is a bit more difficult.

Let us start by obtaining a more combinatorial characterization of piecewise syndetic
sets. The proof is similar to the proof of Proposition 3.3.

Proposition 4.4. P ⊆ Hm is piecewise syndetic iff there is n ≥ m and an exhausting
sequence ~X = {xN : N < ω} so that for every x ∈ Emb(An, ~X), we have
P ∩ (x ◦ Emb(Am,An)) 6= ∅.

Proof. Suppose P ⊆ Hm is piecewise syndetic. Find gN ∈ G a sequence of group elements
so that χP · gN → χS for some syndetic S ⊆ Hm. We may assume that χP · gN(f) = χS(f)
for every f ∈ Emb(Am,AN). Since S is syndetic, there is some n ≥ m with S ∩ (x ◦
Emb(Am,An)) 6= ∅ for every x ∈ Hn. Setting xN = gN |N , it follows that the conclusion
holds.

Conversely, suppose P ⊆ Hm is a set with the property described by the proposition.
Find gN ∈ G with gN |N = xN . Pass to a subsequence so that χP · gN |N → χS for some
S ⊆ Hm. This S has the property that S ∩ x ◦ Emb(Am,An) 6= ∅ for every x ∈ Hn, so S is
syndetic, and P is therefore piecewise syndetic.

Recall that Pm is the collection of piecewise syndetic subsets of Hm. Given a set X and
a family S on X, we say that S is partition regular if given S ∈ S, then whenever we write
S = S1 ∪ S2, some Si ∈ S.

Theorem 4.5. Pm is partition regular.

Proof. Let P = P1∪P2 be piecewise syndetic; using Proposition 4.4, say this is witnessed by
n ∈ N and (xN)N≥n, xN ∈ HN . If P1 is not piecewise syndetic, then for each n0 ∈ N, there
are N ∈ N and yn0 ∈ xN ◦ Emb(An0 ,An) with P1 ∩ (yn0 ◦ Emb(Am,An0)) = ∅. But now we
see that n ∈ N and (yn0)n0≥n witness that P2 is piecewise syndetic.
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Write Nm := P(Hm) \Pm for the collection of not-piecewise-syndetic subsets of Hm. We
have just proven that Nm is an ideal. There is another natural ideal one could consider on
Hm:

Im := {A ⊆ Hm : ∀T ∈ Tm(T \ A ∈ Tm)}.

In other words, members of Im are exactly those sets which do not destroy any thick set.
We will eventually see that Nm = Im, and we will use this to prove Theorems 4.2 and 4.3.

Proposition 4.6. Nm ⊆ Im.

Proof. Let W ∈ Nm, and fix T ∈ Tm. Find for each N ≥ m an xN ∈ HN so that xN ◦
Emb(Am,AN) ⊆ T . As W is not piecewise syndetic, we can find for each n ≥ m an
N ≥ n and a yn ∈ xN ◦ Emb(An,AN) with W ∩ (y ◦ Emb(Am,An)) = ∅. But now set
U =

⋃
n yn ◦ Emb(Am,AN). We see that U is thick and U ⊆ T \W .

To prove the other inclusion, we need a characterization of piecewise syndetic sets similar
to Fact 1.3. Call S ⊆ Hm minimal if χS ·G is a minimal G-flow. Note that any non-empty
minimal set is syndetic.

Proposition 4.7. Let P ⊆ Hm. Then P is piecewise syndetic iff there is some minimal
right ideal Y ⊆ lim←− βHn and some α ∈ Y with P ∈ α(m). Equivalently, P is piecewise

syndetic iff P̃ ⊆ S(G) meets some minimal right ideal.

Proof. First, suppose there are Y and α ∈ Y as above with P ∈ α(m). Then χP · α ·G is
a minimal G-flow, so α−1(P ) is a minimal set. Since im ∈ α−1(P ), we see that α−1(P ) is
syndetic, so P is piecewise syndetic.

For the converse, suppose P is piecewise syndetic, where S is syndetic and χS = χP · α,
α ∈ lim←− βHn. By replacing α with α · γ for γ ∈ lim←− βHn in some minimal right ideal, we
can assume that α is in some minimal right ideal Y . Fix g ∈ G with g|m ∈ α−1(P ). Then
P ∈ αg(m) and α · g ∈ Y .

Lemma 4.8. Let Fm ∈ β(Tm). Then for any A ∈ Im, we have Hm \ A ∈ Fm.

Proof. Fix A ∈ Im, and let B = Hm \ A. Then for every T ∈ Tm, we have T ∩ B ∈ Tm. In
particular, Fm ∪ {B} generates a thick filter, so by maximality of Fm we have B ∈ Fm.

Theorem 4.9. Nm = Im.

Proof. By Proposition 4.6, it is enough to prove Im ⊆ Nm. Suppose that P ⊆ Hm is
piecewise syndetic. We need to show that P 6∈ Im. By Proposition 4.7, fix a minimal right
ideal Y = lim←−Yn ⊆ lim←− βHn and an α ∈ Y with P ∈ α(m). Let Fn be the filter of clopen
neighborhoods of Yn; by Theorem 3.5, we have Fn ∈ β(Tn) for each n ∈ N. But suppose P
were in Im; by Lemma 4.8, we have Hm \ P ∈ Fm, so in particular Hm \ P ∈ α(m). This is
a contradiction.

Note that Theorem 4.9 implies Theorem 4.2. We conclude this section with the (now
short) proof of Theorem 4.3.
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Proof of Theorem 4.3.
Assume P is piecewise syndetic. As P 6∈ Im, find a thick T ⊆ Hm with T \ P not thick; we
may assume P ⊆ T . So Hm \ (T \ P ) = P ∪ (Hm \ T ) := S is syndetic, and P = T ∩ S.

For the other direction, say T ∈ Tm and S ∈ Sm. Then T \ T ∩ S is not thick, so T ∩ S
is piecewise syndetic.

Remark. The proof of Theorem 4.9 gives us the following strengthening of Corollary 4.3. If
P ⊆ Hm is piecewise syndetic and P is F -positive for some F ∈ β(Tm), then there is T ∈ F
with T \P not thick. As we may assume T ⊇ P , we have that Hm \ (T \P ) := S is syndetic,
and P = T ∩ S.

5 Questions

In this final section, we collect some questions suggested by the previous results. The first
question is an abstract one about families.

Question 5.1. If (X,S) is a family and Y is a set, then what are necessary and sufficient
conditions for ϕ : (X,S)→ Y to be regular?

The “map” language we have been using is somewhat misleading; whether or not a map
ϕ : (X,S) → Y is regular or strong depends only on the equivalence relation Eϕ, where
xEϕx

′ iff ϕ(x) = ϕ(x′). In particular, we can restrict our attention to the case where ϕ is
surjective.

When thinking about Question 5.1, it might be useful to “turn the problem around.”
Fix a surjection ϕ : X → Y . If T is a family on Y , set

ϕ−1(T ) = {S : S is a family on X and ϕ(S) = T }.

Two families in ϕ−1(T ) are worth distinguishing. We set

ϕ−1min(T ) = {A ⊆ X : ∃B ∈ T (ϕ−1(B) ⊆ A)},
ϕ−1max(T ) = {A ⊆ X : ϕ(A) ∈ T }.

It is not hard to check that for any family S ∈ ϕ−1(T ), we have ϕ−1min(T ) ⊆ S ⊆ ϕ−1max(T ).
Also note that ϕ : (X,S) → Y is strong iff S = ϕ−1max(T ). When T and ϕ are understood
and S ∈ ϕ−1(T ), call S regular if the map ϕ : (X,S)→ Y is regular.

Proposition 5.2. S = ϕ−1min(T ) is regular.

Proof. Let p ∈ β(S). For A ⊆ X, let Ã denote the largest Eϕ-invariant subset of A. By our
assumption that S = ϕ−1min(T ), we have that if A ∈ p, then also Ã ∈ p.

Suppose towards a contradiction that ϕ(p) ( q for some q ∈ β(T ). Fix B ∈ q \ ϕ(p).
Then ϕ−1(B) 6∈ p, so find A ∈ p with ϕ−1(B) ∩ A 6∈ S. We may assume A = Ã. But now
B ∩ ϕ(A) 6∈ T , a contradiction since we have B and ϕ(A) in q.

Given S,S ′ ∈ ϕ−1(T ), say that S ′ is a conservative over S if S ⊆ S ′ and for every
p ∈ β(S ′), we have p ∩ S ∈ β(S). If S is regular and S ′ is conservative over S, then S ′ is
also regular.
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Proposition 5.3. With T and ϕ as above, S ∈ ϕ−1(T ) is regular iff S is conservative over
ϕ−1min(T ).

Proof. One direction is clear. For the other direction, suppose S is regular, and fix p ∈ β(S).
Towards a contradiction, suppose p ∩ ϕ−1min(T ) ( q with q ∈ β(ϕ−1min(T )), and let A ∈ q \ p.
We may assume A = Ã, i.e. that A is Eϕ-invariant. But we have ϕ(A) ∈ ϕ(q) = ϕ(p), so
ϕ−1(ϕ(A)) = A ∈ p, a contradiction.

The next question concerns both abstract families and the families Tm of thick sets on
Hm. Suppose X is a set and F , F ′ are filters on X. In a slight abuse of language, call F
and F ′ disjoint if there are A ∈ F and B ∈ F ′ with A ∩ B = ∅. If S is a family on X, we
say that S has disjointness if whenever p 6= q ∈ β(S), we have p and q disjoint.

Question 5.4. Characterize those families S with disjointness.

Suppose briefly that G is a discrete group. If T is the family of thick subsets of G, then
T has disjointness. This is because the members of β(T ) are exactly the filters of clopen
neighborhoods of minimal right ideals of βG, and minimal right ideals of βG are either
identical or disjoint.

Returning to the case that G = Aut(K), while it is still true that distinct minimal right
ideals of S(G) are disjoint, this is not necessarily true on each level. So for the family Tm,
Question 5.4 is equivalent to the following:

Question 5.5. Let Y = lim←−Yn and Y ′ = lim←−Y
′
n be distinct minimal right ideals of S(G) =

lim←− βHn. If Ym 6= Y ′m, must we have Ym ∩ Y ′m = ∅?

The final question is specific to the families Tm, or at least to reasonably “definable”
families. Theorem 4.2 guarantees that to every piecewise syndetic P ⊆ Hm, there is a thick
T ⊆ Hm so that P destroys T . This question asks whether there is a ”definable” choice of
T .

Question 5.6. Let X = {(P, T ) ∈ 2Hm×2Hm : T is thick and P ∈ Dest(T )}. Does X admit
a Borel uniformization? In other words, is there a Borel partial function ψ : 2Hm → 2Hm

with domain the piecewise syndetic sets so that ψ(P ) is thick and P destroys ψ(P )?

In the setting where G is a countable discrete group, the answer to the analogous question
is positive. If P is piecewise syndetic, search for a finite E = {g1, ..., gk} ⊆ G with T :=
Pg1 ∪ · · · ∪ Pgk thick so that k is minimal. Then set ψ(P ) = Tg−11 .
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